Computing flux linkages in rotational systems
Consider a rotational arrangement with two parts:

- Stator (that remains)
- Rotor (that rotates)

Source: Wükipedia

Rotor coils carrying
rotor current. rotor current.

Stator coils carrying stator current.

Diagram showing a cross-section of a rotational system.
In the following, we will compute the flues linkages λ_{s} and λ_{s} with the stator aud rotor coils, respectively.

Use symmetry to conclude that \vec{H}. magnetic field intensity, is radial in nature?

Claim: It between angles 0 to θ is uniform, between angles θ to π is uniform, between angles $i t$ to $\pi+\theta$ is uniform, and between angles $\pi+\theta$ fo 2π is mifform.

Consider this loop \mathcal{L}. Ampere's law states that $\oint_{\mathcal{L}} \vec{H} \cdot d l=0$.
Expanded view.

$$
\Rightarrow\left(H_{a}-H_{b}\right) \cdot g=0 \Rightarrow H_{a}=H_{b}
$$

- Apply Ampere's law around the loops $\mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}, \mathscr{L}_{4}$.

$$
\begin{aligned}
& \left(H_{4}-H_{1}\right) \cdot g=-N_{s} i_{s},: \mathcal{L}_{1} \\
& \left(H_{1}-H_{2}\right) \cdot g=-N_{r} i_{r},: \mathcal{L}_{2} \\
& \left(H_{2}-H_{3}\right) \cdot g=N_{s} i_{s},: \mathcal{L}_{3} \\
& \left(H_{3}-H_{4}\right) \cdot g=N_{r} i_{r}: \mathcal{L}_{4}
\end{aligned}
$$

- By symmetry, we have $H_{1}=-H_{3}$, and $\mathrm{H}_{2}=-\mathrm{H}_{4}$. Why? If you reverse the currents, you will interchange the roles of $\mathrm{H}_{1}, \mathrm{H}_{3}$, and that of $\mathrm{H}_{2} \& \mathrm{H}_{4}$.

$$
\begin{array}{ll}
\left(H_{4}-H_{1}\right) \cdot g=-N_{s} i_{s}, & \\
\left(H_{1}-H_{2}\right) \cdot g=-N_{r} i_{r}, & H_{1}=-H_{3}, \\
\left(H_{2}-H_{3}\right) \cdot g=N_{s} i_{s}, & H_{2}=-H_{4} . \\
\left(H_{3}-H_{4}\right) \cdot g=N_{r} i_{r} . &
\end{array}
$$

We obtained
these from Ampere's low \sum_{1}^{1} symmetry.

Let's use these equations to compute H_{1}, \ldots, H_{4}.

$$
H_{2}-H_{3}=N_{s} i_{s} / g \Rightarrow H_{2}+H_{1}=N_{s} i_{s} / g
$$

Also, we have $\underbrace{H_{1}-H_{2}=-N_{r} i_{r} / g}$

$$
\begin{aligned}
& \Rightarrow \quad H_{1}=\frac{1}{2 g}\left(N_{s} i_{s}-N_{r} i_{r}\right) \\
& \Rightarrow \quad H_{2}=\frac{1}{2 g}\left(N_{s} i_{s}+N_{r} i_{r}\right)
\end{aligned}
$$

- Computing flux linkages λ_{s} and λ_{r}. Denoting magnetic flux densities in the respective locations as $B_{1}, B_{2}, B_{3}, B_{4}$, we have $B_{i}=\mu_{0} H_{i}^{0}, \quad i=1,2,3,4$.
- What is λ_{s} ?

Thus linked with the stator coil.

- How do you measure it?

Consider an open surface that has the stator coil as its ends.
 whose cross -section is shown here, and if extends longitudinally along the length of the cylindrical components.

$$
\therefore \lambda_{s}=N_{s} \cdot \int_{y} \vec{B} \cdot d \vec{s}
$$

$$
\begin{aligned}
& \phi_{=}=N_{\theta} \quad B_{1} \cdot R L d \phi+N_{5} \int_{\phi=0} B_{2} \cdot R L d \phi, \\
& \phi=0
\end{aligned}
$$

where recall that $B_{1}=\mu_{0} H_{1}=\frac{\mu_{0}}{2 g}\left(N_{s} i_{s}-N_{1} i_{1}\right)$,

$$
\text { and } \quad B_{2}=\mu_{0} H_{2}=\frac{\mu_{0}}{2 g}\left(N_{s} i_{s}+N_{1} i_{r}\right) \text {. }
$$

Let's simplify the expression.

$$
\begin{aligned}
& \lambda_{s}= \frac{N_{s} \mu_{0}}{2 g} R L\left(N_{s} i_{s}-N_{r} i_{r}\right) \theta \\
&+\frac{N_{s} \cdot \mu_{0} R L}{2 g}\left(N_{s} i_{s}+N_{r} i_{r}\right)(\pi-\theta) . \\
&= \frac{\mu_{0} R L}{2 g}\left[\begin{array}{c}
N_{s}^{2} \theta i_{s}-N_{s} N_{r} \theta i_{r} \\
\\
\left.+N_{s}^{2}(\pi-\phi) i_{s}+N_{s} N_{r}(\pi-\theta) i_{r}\right] \\
= \\
\underbrace{2 g}_{:=\alpha_{0} R L \pi}\left[N_{s}^{2} i_{s}+N_{s} N_{r}\left(1-\frac{2 \theta}{\pi}\right) i_{r}\right] . \\
=
\end{array}\right. \\
& N_{s}^{2} \alpha_{0} i_{s}+N_{s} N_{r} \mathcal{L}_{0}\left(1-\frac{2 \theta}{\pi}\right) i_{r} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { It is of the form } \\
& \lambda_{s}=\mathcal{L}_{s} i_{s}+\mathcal{L}_{m}(\theta) i_{r}
\end{aligned}\left\{\begin{array}{l}
\mathcal{L}_{s}=N_{s}^{2} L_{0} \\
\mathcal{L}_{m}(\theta)=N_{s} N_{s} L_{0}\left(1-\frac{2 \theta}{\bar{n}}\right) .
\end{array}\right.
$$

Similarly, one can calculate λ_{r}.

$$
\begin{aligned}
& \lambda_{r}=N_{r} B_{2} \cdot \operatorname{RL}(\pi-\theta) \quad \text { Use } H_{3}=-H_{1} \text {. } \\
& \left.+\begin{array}{lll}
N_{r} & B_{3} & R L \theta .
\end{array}\right\} \Rightarrow B_{3}=-B_{1} . \\
& =\frac{\mu_{0} R L}{2 g}\left[N_{r}\left(N_{s} i_{s}+N_{r} i_{r}\right)(\pi-\theta)\right. \\
& \left.+N_{r}\left(N_{r} i_{r}-N_{s} i_{s}\right) \theta\right] . \\
& \begin{array}{r}
=\frac{\mu_{0} R L}{2 g}\left[\begin{array}{c}
N_{s} N_{r}(\pi-\theta) i_{s}+N_{r}^{2}(\pi-\theta) i_{r} \\
+N_{r}^{2} \theta i_{\gamma}-N_{s} N_{r} \theta i_{s}
\end{array}\right] .
\end{array} \\
& \left.+N_{s}^{2} \theta i_{r}-N_{s} N_{r} \theta i_{s}\right] \text {. } \\
& =\underbrace{\mu_{0} R L \pi}_{:=\mathcal{L}_{0}}\left[N_{1}^{2} i_{r}+N_{s} N_{r}\left(1-\frac{2 \theta}{\pi}\right) i_{s}\right] . \\
& =N_{1}^{2} \mathcal{L}_{0} i_{r}+N_{s} N_{r} \mathscr{L}_{0}\left(1-\frac{2 \theta}{\pi}\right) .
\end{aligned}
$$

λ_{r} is of the form

$$
\lambda_{r}=\mathcal{L}_{r} i_{r}+\mathcal{L}_{\text {av }}(\theta) i_{s} .
$$

We explicitly show the dependency on θ.

$$
\begin{aligned}
& \therefore \lambda_{s}(\theta)=\mathcal{L}_{s} i_{s}+\mathcal{L}_{m}(\theta) i_{r}, \\
& \lambda_{r}(\theta)=\mathcal{L}_{m}(\theta) i_{s}+\mathcal{L}_{r} i_{r} \text {. } \\
& \Rightarrow\binom{\lambda_{s}(\theta)}{\lambda_{r}(\theta)}=\left(\begin{array}{ll}
\mathscr{L}_{s} & \mathcal{L}_{m}(\theta) \\
\mathscr{L}_{m}(\theta) & \mathscr{L}_{r}
\end{array}\right)\binom{i_{s}}{i_{r}} \\
& \Rightarrow \underbrace{\underline{\lambda(\theta)}}_{\substack{\text { vector of } \\
\lambda^{\prime} s}}=\underbrace{\mathcal{L}}_{\sum_{\text {matrix }}^{\sim}}{\underset{\sim}{\text { vector }} \text { of inductance. }}_{i}^{i}
\end{aligned}
$$

This is an electrically linear system.

Dynamical system descriptions of electromechanical systems.
Consider an arrangement shown below.

- Uniform depth $=\omega$.
- No fringing.
- $x=0$ corresponds to the spring being uncompressed.
(1) Compute the voltage induced as a function of time.
(2) Write the mechanical equation for the block.
(1) Computing the voltage:

$$
\begin{aligned}
\phi & =\frac{N_{i}^{\circ}}{R_{x}+R_{g} \| R_{g}} \\
& =\frac{N_{i}^{\circ}}{R_{x}+\frac{1}{2} R_{g}},
\end{aligned}
$$

where $R_{x}=\frac{x}{\mu_{0}\left(2 \omega^{2}\right)}, \quad R_{g}=\frac{g}{\mu_{0} \omega^{2}}$.

$$
\begin{aligned}
& \Rightarrow \phi=\frac{2 \mu_{0} \omega^{2} N_{i}}{x+g} \Rightarrow \lambda=\frac{2 \mu_{0} N^{2} \omega^{2} i}{x+g} . \\
& \therefore v=\frac{d \lambda}{d t}=\left(2 \mu_{0} N^{2} \omega^{2}\right)\left[\frac{1}{g+x} \cdot \frac{d_{i}}{d t}+i\left(\frac{-1}{(g+x)^{2}}\right) \cdot \frac{d x}{d t}\right] .
\end{aligned}
$$

(2)

Now, we want to write the mechanical equation for the bar with mass M. Agenda: Drwo free-boty diagram. Write Newton's second law.
$\left.R_{x}\right\}$ due to the spring
\downarrow getting compressed
getting compressed
Toe $\}$ sine the bar gets magnetized, it $\begin{gathered}\text { mass } \\ =M\end{gathered}$ frees this magnetic force. Since the
magnetization lis the result of electric magnetization lis the result of electric
current, we call it force of current, we call it force of
Mg\} due to gravity. electrical origin.

Newton's law says:

$$
M \ddot{x}=f^{e}-M g-k x
$$

Now, let's calculate f. Notice that it would generally be difficult to find the exact magnetization of the bar and compute how if interacts with the magnetic field around. Since this route seems challenging, we compute fo using energy considerations.

Consider the total energy of the system. Call it W_{m}. What is the rate at which ω_{m} is changing?

$$
\begin{aligned}
\frac{d \omega_{m}}{d t}= & \underbrace{\left.\begin{array}{c}
\text { power input } \\
\text { to the system }
\end{array}\right)}_{\text {from the current }}-\underbrace{\text { by the force of }}_{\text {from work the coil. }} \begin{array}{c}
\text { electrical origin. } \\
\text { of the system w }
\end{array}) \\
= & i(t) \cdot v(t)-f^{e} \cdot \frac{d x}{d t} . \\
= & i \cdot \frac{d \lambda}{d t}-f^{e} \frac{d x}{d t} . \\
\Rightarrow d \omega_{m}= & i d \lambda-f^{e} d x .
\end{aligned}
$$

Let ω_{m} be a function of λ and x. Then Euler's relation is given by

$$
d \omega_{m}=\frac{\partial \omega_{m}}{\partial \lambda} d \lambda+\frac{\partial \omega_{m}}{\partial x} \cdot d x
$$

Let's equate these two expressions for ω_{m}.

$$
\begin{aligned}
& d w_{m}=i d \lambda-f^{e} d x \\
& d w_{m}=\frac{\partial w_{m}}{\partial \lambda} d \lambda+\frac{\partial w_{m}}{\partial x} d x
\end{aligned}
$$

Equating coefficients, we get

$$
i=\frac{\partial \omega_{m}}{\partial \lambda}, \quad \&_{i}^{\prime} \quad f^{e}=-\frac{\partial \omega_{m}}{\partial x} .
$$

Thus to calculate f^{e}, let's calculate $\omega_{m}(\lambda, x)$ and take its partial derivative $-\frac{\partial \omega_{m}}{\partial x}$.

- Calculating $W_{m}(\lambda, x)$.

Suppose we take the system from $\left(\lambda_{a}, x_{a}\right)$ $t_{0}\left(\lambda_{b}, x_{b}\right)$. Notice that if the system is conservative, thew the change in W_{m} is independent of the path taken.
$\therefore W_{m}\left(\lambda_{b}, x_{b}\right)-W_{m}\left(\lambda_{a}, x_{a}\right)$ is independent of the path. In the adjoining
 figure, this difference is the same over the paths $P_{1} \xi_{1} P_{2}$.

$$
w_{m}\left(\lambda_{b}, x_{b}\right)-\omega_{m}\left(\lambda_{a}, x_{a}\right)
$$

$$
=\int_{\left(\lambda_{a}, x_{a}\right)}^{\left(\lambda_{a}, x_{b}\right)} i d \bar{\lambda}-f^{e} d \bar{x}
$$

Along this path, $d x=0$.

$$
=\int_{\left(\lambda_{a}, x_{c}\right)}^{\left(\lambda_{a}, x_{b}\right)}-f^{e}(\lambda, \bar{x}) d \bar{x}+\int_{\left(\lambda_{a}, x_{b}\right)}^{\left(\lambda_{b}, x_{b}\right)} i(\bar{\lambda}, x) d \bar{\lambda}
$$

Let's look at this more closely.

$$
G=\int_{x_{a}}^{x_{b}}-f^{e}\left(\lambda_{a}, \bar{x}\right) d \bar{x} .
$$

Choose $\lambda_{a}=0$. Then, there is no force of electrical origin, i.e., $f^{e}\left(\lambda_{a}, \bar{x}\right)=0$.

$$
\begin{gathered}
\therefore W_{m}\left(\lambda_{b}, x_{b}\right)-W_{m}\left(0, x_{a}\right) \\
\left(\lambda_{b}, x_{b}\right) \\
=\int_{1} i\left(\bar{\lambda}, x_{b}\right) d \bar{\lambda} .
\end{gathered}
$$

$$
\left(\lambda_{a}, x_{b}\right)
$$

More generally,

$$
w_{m}(\lambda, x)=\widetilde{W}_{m}\left(0, x_{a}\right)+\int_{0}^{\lambda} i(\bar{\lambda}, x) d \bar{\lambda}
$$ convention of what we define as a 0 -energy level.

depends on our

From now ow, we will assume $W_{m}\left(0, x_{n}\right)=0$. This is just a convention, and does not affect any calculations.
Here onwards, we will cellenlate

$$
W_{m}(\lambda, x)=\int_{0}^{\lambda} i(\bar{\lambda}, x) d \bar{\lambda}
$$

- Back to calculating f_{e}.
$=$ Compute $i(\lambda, x)$.
- Invert it to find $\lambda(i, x)$.
$=$ Compute $\omega_{\text {an }}(\lambda, x)=\int_{0}^{\lambda} i(\bar{\lambda}, x) d \bar{\lambda}$.

$$
=f^{e}=-\frac{\partial \omega_{m x}}{\partial x} .
$$

Then, finish writing Newton's laws with fe.

- Back to the example. we already calculated

$$
\begin{aligned}
\lambda(i, x) & =\frac{2 \mu_{0} N^{2} \omega^{2} i}{x+g} . \\
\Rightarrow i(\lambda, x) & =\frac{\lambda(x+g)}{2 \mu_{0} N^{2} \omega^{2}} .
\end{aligned}
$$

$$
\begin{aligned}
\therefore W_{m}(\lambda, x) & =\int_{0}^{\lambda} i(\bar{\lambda}, x) d \bar{\lambda} \\
& =\int_{0}^{\lambda} \frac{\bar{\lambda}(x+g)}{2 \mu_{0} N^{2} \omega^{2}} \cdot d \bar{\lambda} \\
& =\frac{\lambda^{2}(x+g)}{4 \mu_{0} N^{2} \omega^{2}} . \\
\therefore f^{e}=-\frac{\partial W_{m}}{\partial x} & =\frac{-\lambda^{2}}{4 \mu_{0} N^{2} \omega^{2}}
\end{aligned}
$$

Mechanical equation:

$$
\begin{aligned}
M_{x} \ddot{x} & =f^{e}-M_{g}-k x \\
& =\frac{-\lambda^{2}}{4 \mu_{0} N^{2} w^{2}}-M_{g}-k x .
\end{aligned}
$$

Replace λ in terms of $i \notin x$.

$$
\begin{aligned}
\Rightarrow M_{\ddot{x}} \ddot{ } & =-\frac{1}{4\left(\mu_{0} N^{2} \omega^{2}\right.} \cdot \frac{4 \mu_{0}^{2} N^{4} \omega^{4} i^{2}}{(x+g)^{2}}-M g-k x \\
& =-\frac{\mu_{0} N^{2} \omega^{2}}{(x+g)^{2}} \cdot i^{2}-M_{g}-k x .
\end{aligned}
$$

- Dynamical system description for the example.
- Electrical equation

$$
v=\left(2 \mu_{0} N^{2} \omega^{2}\right)\left[\frac{1}{g+x} \cdot i+i\left(\frac{-1}{(g+x)^{2}}\right) \cdot \dot{x}\right]
$$

- Mechanical equation

$$
M_{\ddot{x}}=I \frac{\mu_{0} N^{2} \omega^{2}}{(x+g)^{2}} \cdot i^{2}-M_{g}-k x
$$

Co-energy: another route to compute f_{e}.
Define co-energy for our $1-\mathrm{co}^{\circ} \mathrm{l}$ system as

$$
W_{m}^{\prime}=i \lambda-W_{m} .
$$

Then, $\quad d W_{m}^{\prime}=i d \lambda+\lambda d i-d W_{m}$

$$
\begin{aligned}
& =i d \lambda+\lambda d_{i}-\left[i d \lambda-f^{e} d x\right] \\
& =\lambda d_{i}+f^{e} d x .
\end{aligned}
$$

If w_{m}^{\prime} is a function of i and x, then

$$
d \omega_{m}^{\prime}=\frac{\partial \omega_{m}^{\prime}}{\partial i} d_{i}+\frac{\partial \omega_{m}^{\prime}}{\partial x} d x \text {. }
$$

Equating the coefficient of $d x$, we get

$$
f^{e}=\frac{\partial w_{m}^{\prime}}{\partial x} .
$$

How do you compute $W_{m}^{\prime \prime}$?
We will not prove it, but the argument follows very similarly to the derivation of energy ω_{m}. Specifically, we have

$$
W_{m}^{\prime}(i, x)=\int_{0}^{i} \lambda(\hat{i}, x) d \tilde{i}
$$

Let's compute fe through W_{m}^{\prime} for our example.

- Back to the example n we already calculated

$$
\begin{aligned}
& \lambda(i, x)=\frac{2 \mu_{0} N^{2} \omega^{2} i}{x+g} . \\
& f^{e}=-\frac{\mu_{0} N^{2} \omega^{2}}{(x+g)^{2}} i^{2} .
\end{aligned}
$$

$$
\begin{aligned}
& W_{m}^{\prime}(i, x)=\int_{0}^{i} \frac{2 \mu_{0} N^{2} \omega^{2} \tilde{i}}{x+g} d \tilde{i} \\
& =\frac{\mu_{0} N^{2} \omega^{2}}{(x+g)} i^{2} \text {. } \\
& \therefore f^{e}=\frac{\partial \omega_{m}^{\prime}}{\partial x}=\frac{-\mu_{0} N^{2} \omega^{2} i^{2}}{(g+x)^{2}} \cdots \text { same expression } \text { as calculated }
\end{aligned}
$$

from energy Wm_{m}.

- Is there any advantage of calculating fe via W_{m}^{\prime} as opposed to whin?
Ans: You don't need to invert the $\lambda-i$ relationship. This really helps us whew we have more thaw one coil.
Consider an arrangement with two coils carrying currents i_{1} and i_{2}, and there is one geometric variable x.

Then, for an electrically linear system, you will obtain

$$
\begin{aligned}
& \lambda_{1}\left(i_{1}, i_{2}, x\right)=L_{1}(x) i_{1}+L_{m}(x) i_{2} \\
& \lambda_{2}\left(i_{1}, i_{2}, x\right)=L_{m}(x) i_{1}+L_{2}(x) i_{2}
\end{aligned}
$$

- Calculating f^{e} via W_{m}^{\prime}.

$$
\begin{aligned}
& W_{m}^{\prime}\left(i_{1}, i_{2}, x\right) \\
& =\int_{0}^{i_{1}} \lambda_{1}\left(\tilde{i}_{1}, 0, x\right) d \tilde{i}_{1} \\
& \quad+\int_{0}^{i_{2}} \lambda_{2}{\underset{\substack{1}}{ }\left(i_{1}, \tilde{i}_{2}, x\right) d \tilde{i}_{2}}_{\substack{\text { This is NOT zero. } \\
\text { Be careful! }}} \quad .
\end{aligned}
$$

Why? Recall that calculating $W_{\text {m }}^{\prime}\left(i_{1}, i_{2}, x\right)$
involves taking a path integral of $d w_{m}^{\prime}$ frow $(0,0, x)$ to $\left(i_{1}, i_{2}, x\right)$. In this case, we will take the integral along the path $(0,0, x) \rightarrow\left(i_{1}, 0, x\right) \rightarrow\left(i_{1}, i_{2}, x\right)$.

Suppose you have a system with $N \underbrace{\text { electrical ports }}$ \& $M \underbrace{\text { mechanical ports }}$. these refer to current carrying
coils.

Let the currents be given by $i_{1}, i_{2}, \ldots, i_{N}$, these refer to parts that move within the system.

Let the geometric variables be given by and flux linkages be given by $\lambda_{1}, \ldots, \lambda_{N}$. $x_{1}, \ldots x_{M}$, and the forces due to electrical origin be f_{1}, \ldots, f_{m}^{e}.

Then,

$$
\begin{aligned}
& \text { - } d W_{\text {m }}^{\prime}=\sum_{j=1}^{N} \lambda_{j} d i_{j}+\sum_{k=1}^{M} f_{k} d x_{k} \text {. } \\
& \text { - } W_{m}^{\prime}\left(i_{1}, i_{2}, \ldots, i_{N}, x_{1}, \ldots, x_{M}\right) \\
& =\int_{0}^{i_{1}} \lambda_{1}\left(\tilde{i}_{1}, 0, \ldots 0, x_{1}, \ldots, x_{M}\right) d \tilde{i}_{1} \\
& +\int_{0}^{i_{2}} \lambda_{2}\left(i_{1}, \tilde{i}_{2}, \ldots, 0, x_{1}, \ldots, x_{M}\right) d \tilde{i}_{2} \\
& +\ldots+\int_{0}^{i_{N}} \lambda_{N}\left(i_{1}, i_{2}, \ldots, \tilde{i}_{N}, x_{1}, \ldots, x_{M}\right) d \tilde{i}_{N} \\
& \text { - } f_{k}^{e}=\frac{\partial W_{m}^{\prime}}{\partial x_{k}} \text {. for each } k=1, \ldots, M \text {. }
\end{aligned}
$$

Example:
Consider a system with 2 electrical and 2 mechanical ports, whose flux linkages are given by

$$
\begin{aligned}
& \lambda_{1}\left(i_{1}, i_{2}, x_{1}, x_{2}\right)=a x_{1}^{2} i_{1}^{3}+b x_{2}^{2} x_{1} i_{2}, \\
& \lambda_{2}\left(i_{1}, i_{2}, x_{1}, x_{2}\right)=b x_{2}^{2} x_{1} i_{1}+c x_{2}^{2} i_{2}^{3},
\end{aligned}
$$

where i_{1}, i_{2} are the currents, and x_{1}, x_{2} describe the geometric variables.

- Is this system electrically linear?
- Calculate f_{1}, f_{2}^{e}, the forces due to electrical origin.
Solution: - λ_{1} depends on $i_{1}^{i_{1}^{3} \Rightarrow} \begin{gathered}\text { not electrically } \\ \text { linear. }\end{gathered}$
- Computing f_{1}^{e}, f_{2}^{e} involves two steps: - compute W_{m}^{\prime}.
- computé f_{1}^{l}, f_{2}^{l}.

$$
\begin{aligned}
& w_{m}^{\prime}\left(i_{1}, i_{2}, x_{1}, x_{2}\right) \\
& =\int_{0}^{i_{1}} \lambda_{1}\left(\tilde{i}_{1}, 0, x_{1}, x_{2}\right) d i_{1}^{2} \\
& \quad+\int_{0}^{i_{2}} \lambda_{2}\left(i_{1}, \tilde{i}_{2}, x_{1}, x_{2}\right) d i_{2} \\
& =\int_{0}^{i_{1}} a x_{1}^{2} \tilde{i}_{1}^{3} d i_{i_{1}}+\int_{0}^{i_{2}}\left(b x_{2}^{2} x_{1} i_{1}+c x_{2}^{2} \tilde{i}_{2}^{3}\right) d \tilde{i}_{2} \\
& =\frac{1}{4} a x_{1}^{2} i_{1}^{4}+b x_{2}^{2} x_{1} i_{1} i_{2}+\frac{1}{4} c x_{2}^{2} i_{2}^{4} \\
& f_{1}^{e}=\frac{\partial w_{m}^{\prime}}{\partial x_{1}}=\frac{1}{2} a i_{1}^{4} x_{1}+b x_{2}^{2} i_{1} i_{2}, \\
& f_{2}^{e}=\frac{\partial w_{m}^{\prime}}{\partial x_{2}}=2 b x_{2} x_{1} i_{1} i_{2}+\frac{1}{2} c x_{2} i_{2}^{4} .
\end{aligned}
$$

For rotational systems, geometric variables are $\theta_{1}, \ldots, \theta_{M}$. Instead of forces of electrical origin, you compute torques of electrical origin $T_{1}^{e}, \ldots, T_{M}^{e}$.

